Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuries

mild Traumatic Brain
Traumatic Brain Injuries
Traumatic Brain
mild Traumatic
classification methods perform
Author

Matt Higger, Martha Shenton, Sylvain Bouix

Published

October 31, 2017

Abstract:

Because mild Traumatic Brain Injuries (mTBI) are heterogeneous, classification methods perform outlier detection from a model of healthy tissue. Such a model is challenging to construct. Instead, we utilize region-specific pairwise (person-to-person) comparisons. Each person-region is characterized by a distribution of Fractional Anisotropy and comparisons are made via Median, Mean, Bhattacharya and Kullback-Liebler distances. Additionally, we examine an ordinal decision rule which compares a subject’s nth most atypical region to a healthy control’s. Ordinal comparison is motivated by mTBI’s heterogeneity; each mTBI has some set of damaged tissue which is not necessarily spatially consistent. These improvements correctly distinguish Persistent Post-Concussive Symptoms in a small dataset but achieve only a .74 AUC in identifying mTBI subjects with milder symptoms. Finally, we perform subject-specific simulations which characterize which injuries are detected and which are missed.